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Abstract
The present paper extends some results recently developed for the analysis
of observability in nonlinear dynamical systems. The aim of the paper is to
address the problem of embedding an attractor using more than one observable.
A multivariate nonlinear observability matrix is proposed which includes the
monovariable nonlinear and linear observability matrices as particular cases.
Using the developed framework and a number of worked examples, it is shown
that the choice of embedding coordinates is critical. Moreover, in some cases,
to reconstruct the dynamics using more than one observable could be worse
than to reconstruct using a scalar measurement. Finally, using the developed
framework it is shown that increasing the embedding dimension, observability
problems diminish and can even be eliminated. This seems to be a physically
meaningful interpretation of the Takens embedding theorem.

PACS number: 05.45.−a

1. Introduction

At the beginning of the 1980s, Packard and colleagues showed that—using a set of coordinates
that included an observed variable and successive derivatives of it (s, ṡ, s̈, . . .)—the resulting
phase portrait was equivalent to the original phase portrait [1]. Such set of coordinates has been
termed derivative coordinates. In the same paper, the authors mentioned the well-known delay
coordinates s(t − τ), s(t − 2τ), . . . . Although such coordinate systems have been extensively
used in the context of nonlinear dynamics, say, for instance, in modelling problems [2–7],
other less commonly used sets of coordinates can be found, such as principal components [8].
The three sets of coordinates—namely derivatives, delays and principal components—have
been investigated and compared in [9].

Let x ∈ R
m be the state vector of the original system. The fundamental problem is

to observe a scalar from the original system by means of a measuring function h, that is
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s(t) = h(x) ∈ R and to form a second space only using coordinates based on s(t), such
as the aforementioned derivative or delay coordinates. Let us denote by �s the map that
takes the original m-dimensional phase space to the de-dimensional embedding space formed
by the derivative coordinates. A key issue is to establish under which conditions on de can the
reconstructed phase space be considered equivalent to the original space. Takens has shown
that a sufficient condition is that de � 2d + 1, where d is the box-counting dimension of the
attractor [10]. Other references that deal with the problem of monovariable embeddings can
be found in the literature [9, 11, 12], whereas the problem of multivariate embeddings has
received much less attention [13].

In the context of clean and infinite data, Takens’ result holds for a generic choice of
the measuring function h. In practice, the choice of the observable s(t) turns out to greatly
influence our ability to reconstruct a phase space which is equivalent to the original space at
least in some sense [14]. In fact, the theory of observability, quite well developed in the
control community, addresses the issue of being able to reconstruct the original phase space
from s(t). Casdagli and colleagues have considered using an observability matrix in the
context of monovariate delay coordinates in the presence of noise [12]. By monovariate it is
meant that the whole set of delay coordinates is built from a single scalar variable.

In a recent paper, it has been shown that the observability matrix computed using Lie
derivatives is equal to the Jacobian matrix of the differential coordinate transformation map,
that is Os = J (�s) [15]. Moreover, it was shown that unobservable regions in space
correspond to regions in which Os becomes singular, reflecting, as expected, the fact that over
such regions there is no inverse from the reconstructed space back to the original phase space.
In other words, no diffeomorphism is defined over such regions [15].

The present paper will extend the framework developed in [15] in order to address the
problem of embedding the original phase space using more than one observable, that is, in
this paper s(t) = h(x) ∈ R

r , r > 1. This is what is referred to as multivariate embedding.
A multivariate nonlinear observability matrix will be proposed and it will be shown that
the monovariable nonlinear and linear observability matrices are particular cases of the new
definition. Using the developed framework and a number of worked examples, it is shown that
the choice of embedding coordinates is critical. Moreover, in some cases, to reconstruct the
dynamics using more than one observable is clearly worse than to reconstruct using a scalar
measurement, contradicting the intuition that the more we measure, the better it is. Finally,
the new framework is useful to show that singularities in the Jacobian of the coordinate
transformation map can be avoided in higher dimensions. This provides practical insights to
the results by Takens [10].

The present paper is quite related to [12] in the sense that it endeavours to investigate
the quality of embeddings in nonideal cases. Some important differences with respect to [12]
seem to be: (i) the present paper is concerned solely with deterministic phenomena whereas
one of the key points in [12] was the presence of noise; in other words, the analysis in [12] is
carried out in a stochastic setting; (ii) the present paper deals with differential embeddings in
contrast to delay coordinates in [12] but this is not so important since Gibson and co-workers
[9] showed that these two sets of coordinates are equivalent; and (iii) most importantly, the
present paper addresses the case of multivariate embeddings whereas [12] only considered the
monovariate case.

Section 2 provides background concepts that are important to understand the paper. In
order to help the reader, the concepts are reviewed in the context of examples that use the
Rössler system. The main results of the paper are described in section 3. Some of the new ideas
are illustrated using the Rössler and Lorenz systems, in section 4. In particular, section 4.3
addresses the case of multivariate differential embeddings with dimension higher than the
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dimension of the original phase space. Finally, a discussion and conclusions are provided in
section 5.

2. Background

2.1. Observability for nonlinear systems

Assume that the dynamical system under study is ẋ(t) = f(x(t)), where t is the time, x ∈ R
m

is the state vector and f is the nonlinear vector field. For a three-dimensional system (m = 3),
the system can be detailed as


ẋ = f1(x),

ẏ = f2(x),

ż = f3(x).

(1)

It is usually assumed that the scalar recorded time series {s(t)}tt=0 is obtained using a
measurement function h : R

m → R, that is s(t) = h(x(t)).
Equivalent phase portraits can be reconstructed using, for instance, the derivative

coordinates as

� =



X = s,

Y = ṡ,

Z = s̈.

(2)

Therefore, � in (2) defines a coordinate transformation between the original dynamical
variables (x, y, z) and the derivative coordinates (X, Y,Z), that is � : R

3(x, y, z) →
R

3(X, Y,Z). If the observable is s = x, the transformation � becomes

�s =




X = s,

Y = fs,

Z = ∂fs

∂x
f1 +

∂fs

∂y
f2 +

∂fs

∂z
f3,

(3)

where fx = f1, fy = f2 and fz = f3 are the components of f , and in this case it can be
written that �s : R

3(x, y, z) → R
3
s (X, Y,Z), where X, Y and Z are given in (3).

Example 1. Consider the Rössler system [16]


ẋ = −y − z,

ẏ = x + ay,

ż = b + z(x − c),

(4)

where (a, b, c) are parameters. If only the y-variable is measured, that is s = y, then

�y =
∣∣∣∣∣∣
X = y,

Y = ẏ = x + ay,

Z = ÿ = ax + (a2 − 1)y − z,

(5)

where �y : R
3(x, y, z) → R

3
y(X, Y,Z) and (X, Y,Z) = (y, ẏ, ÿ). The Jacobian matrix

J (�y) never becomes singular. It can be easily shown that �y is injective. Therefore, the
coordinate transformation �y defines a diffeomorphism from the original phase space to the
reconstructed one.

A much harder case happens when trying to reconstruct the Rössler dynamics from a
single recording of the z-variable. In that case, the coordinate transformation is

�z =
∣∣∣∣∣∣
X = z,

Y = ż = b + z(x − c),

Z = z̈ = −b(c − x) + (x − c)2z − yz − z2.

(6)
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Clearly, the Jacobian matrix

J (�z) =

 0 0 1

z 0 x − c

b + 2z(x − c) −z (x − c)2 − y − 2z


 (7)

becomes rank deficient at z = 0. This, in fact, is a great hindrance to any approach that requires
an embedding from the z-variable, especially because the system evolves in the vicinity of the
plane z = 0 most of the time.

It should become apparent that depending on the variable chosen to observe the system,
the space reconstructed using the selected scalar time series could become singular over
some regions. Such ‘blind’ regions in space correspond to the singular set of the respective
embedding at which the system is unobservable.

A well-known way of testing for observability of an m-dimensional system observed by
a scalar time series s is to build the observability matrix

Os =




C

CÃ

CÃ2

...

CÃm−1




, (8)

where s = Cx and

Ãn+1 =
[
∂Ln

fi
fi

∂x

]
, i = 1, 2, . . . , m (9)

for n = 0, . . . , m − 2, where

Lf fi(x) = ∂fi(x)

∂x
f(x) =

m∑
k=1

∂fi(x)

∂x
fk (10)

is the Lie derivative of the ith component of the vector field f and the higher order derivatives
can be recursively determined as

Ln
f fi(x) = Lf

[
Ln−1

f fi(x)
]
. (11)

Finally, the system is observable at point (s, ṡ, . . . , s(m−1)) if Os is full rank (rank equal to m),
that is, if QT

s Qs is nonsingular. From (9) it is seen that for n = 0, Ã = ∂f/∂x, which is the
Jacobian matrix of the system, that is, Ã = J (f).

As suggested in [15], the observability matrix Os can be interpreted as the Jacobian matrix
of the coordinate transformation map �s ; in other words, Os in (8) is the same as J (�s).

Example 2. For the Rössler system (4), equation (10) yields

Lf f1(x) = ∂f1(x)

∂x
f1 +

∂f1(x)

∂y
f2 +

∂f1(x)

∂z
f3

= −x(1 + z) − ay + cz − b,

Lf f2(x) = ∂f2(x)

∂x
f1 +

∂f2(x)

∂y
f2 +

∂f2(x)

∂z
f3

= ax + (a2 − 1)y − z,

Lf f3(x) = ∂f3(x)

∂x
f1 +

∂f3(x)

∂y
f2 +

∂f3(x)

∂z
f3

= (b + zx − 2cz)x − yz + (c2 − z)z − bc.
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Therefore, taking the derivatives of Lf1(x), Lf2(x) and Lf3(x) with respect to x, y and z (see
equation (9)) yields the matrix

Ã2 =

 −(1 + z) −a c − x

a a2 − 1 −1
b + 2z(x − c) −z (x − c)2 − y − 2z


 . (12)

Finally, the observability matrix (8) for the Rössler system observed from the z-variable
(C = [0 0 1]) can be written as Oz = [CT ÃT CT (Ã2)T CT ]T , which is also Oz =
[CT J (f)T CT (Ã2)T CT ]T and it can be readily seen that Oz = J (�z), see (7).

The standard definition of observability for linear systems is a ‘yes’ or ‘no’ measure,
that is, the system is either observable or not [17]. This is because a system is said to be
observable if the observability matrix is full rank or, in other words, if OT O is nonsingular3.
In practice, however, a system may gradually become unobservable as a parameter is varied or,
for nonlinear systems, it seems reasonable to suppose that there are regions in phase space that
are less observable than others. We quantify the degree of observability with the observability
index, defined as

δ(x) = |λmin[OT O,x(t)]|
|λmax[OT O,x(t)]| , (13)

where λmax[OT O,x(t)] indicates the maximum eigenvalue of matrix OT O estimated at point
x(t) (likewise for λmin). Then, 0 � δ(x) � 1, and the lower bound is reached when the
system is unobservable at point x. It should be noticed that index (13) is a type of condition
number of the observability matrix O.

From the definition, it becomes clear that δ(x) is a local measure, which obviously
depends on the point x in state space where the system is. It will be convenient to summarize
the observability attained from a given variable using a value averaged along an orbit. In this
respect, the following definition is considered:

δ = 1

T

T∑
t=0

δ(x(t)), (14)

where T is the final time considered and, without loss of generality, the initial time was set
to be t = 0. Several numerical issues concerning the calculation of the observability indices
(14) have been discussed in [14].

2.2. Modelling

When the derivative coordinates are used, a differential model may be written under the form


Ẋ = Y,

Ẏ = Z,

Ż = Fs(X, Y,Z),

(15)

where Fs(X, Y,Z) has been called the model function [18]. A great advantage of a model built
on the derivative coordinates is that, when the original system is known, the model function
Fs—which contains information about the dynamical coupling among variables—can be
analytically derived using the coordinate transformation � [19].

Example 3. In the case of the Rössler system observed from variable y, the analytical model
function is

Fy = −b − cX + (ac − 1)Y + (a − c)Z − aX2 + (a2 + 1)XY − aXZ − aY 2 + YZ, (16)

3 The inverse of matrix OT O has been called the distortion matrix in [12].
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which is clearly polynomial and has no singularities. This means that anywhere in the space
reconstructed using the y-variable, the flow of the Rössler system can be perfectly described by
a polynomial function. This result is not only confirmed by previous results on observability
but also by the readiness with which good polynomial models can be built from records of the
y-variable.

When only the z-variable is recorded, X = z, the coordinate transformation map is given
by (6) and the following model function can be analytically obtained:

Fz = b − cX − Y + aZ + aX2 − XY +
(ab + 3Z)Y − aY 2 − bZ

X
+

2bY 2 − 2Y 3

X2
,

which has an order-2 singularity at z2 = 0. This feature poses major problems for model
building from observations of the z-variable alone. This can be solved by using a higher
dimensional reconstructed space [19] (as discussed later) or using a powerful structure selection
as the ansatz library [7].

3. Observability of multivariate embeddings

As far as observability is concerned, there is little doubt that the ideal case is to observe all
the state variables. In that case, vector C becomes an m-dimensional identity matrix such that
s = x = Cx. It is evident that in such a case the observability matrix (8) will be full rank
irrespective of matrix Ã.

The previous remark could lead us to believe that the more variables are measured, the
better the chances to correctly reconstruct the original dynamics by means of an embedding.
In order to investigate this issue, the following definitions are needed.

Definition 1. Given the system ẋ(t) = f(x(t)), x ∈ R
m for which r < m state variables are

recorded such that s = Cx, where [s1 . . . sr ]T = s ∈ R
r is the vector of recorded variables

and C ∈ R
r×m. The set of multivariate embedding coordinates is not unique and can take

the general form (s1, . . . , sr , s
∗), where s∗ will be referred to as the complementary set of

coordinates. In the case of differential embeddings, s∗ is composed of some derivatives of the
measured set (s1, . . . , sr ) such that dim[s] + dim[s∗] � m and s ∩ s∗ = ∅.

According to Takens’ theorem, the dimensionality of the reconstructed phase space can
be greater than m. This will be discussed in section 4.3.

Example 4. Consider a three-dimensional system for which x = [x y z]T and two variables
are recorded (r = 2), say x and y. In this case,

s =
[
x

y

]
=

[
1 0 0
0 1 0

]
x.

In this situation, it is possible to unfold the dynamics onto the third dimension either with x
or with y and the complementary set of coordinates is just a scalar. If x is used, s∗ = ẋ and
(x, y, ẋ). Conversely, if the y-variable is used to unfold the dynamics, then s∗ = ẏ and the
embedded coordinates would be (x, y, ẏ).

Example 5. This example considers a four-dimensional system x = [x y z w]T for which
only y and w are recorded. In this case, m = 4, r = 2 and there are three possible4

4 In principle, other alternatives could be thought of as, for instance, (y, w, ÿ, ẅ), but we shall not consider using
higher order derivatives of a variable unless the lower order time derivatives have been employed.



Observability of multivariate differential embeddings 6317

four-dimensional embedding coordinates, namely

(y,w, ẏ, ÿ), for which s∗ = (ẏ, ÿ),

(y,w, ẇ, ẅ), for which s∗ = (ẇ, ẅ),

(y,w, ẏ, ẇ), for which s∗ = (ẏ, ẇ).

Definition 2. G ∈ R
p×m is a matrix of zeros and ones where the ones indicate which measured

variables are used to compose the complementary set of coordinates, s∗, and p is the number
of such variables.

Example 6. In each of the two alternatives pointed out in example 4, p = 1 because only one
variable (either x or y) was used to compose s∗. In example 5, the three possible embeddings
had a different set of complementary coordinates, s∗. For s∗ = (ẏ, ÿ), p = 1 because only y

is used to compose s∗. Similarly, for s∗ = (ẇ, ẅ), p = 1, and for s∗ = (ẏ, ẇ), p = 2. In
such cases, the respective G matrices are Gy = [0 1 0 0],Gw = [0 0 0 1] and

Gy,w =
[

0 1 0 0
0 0 0 1

]
.

Definition 3. The observability matrix Os of the system ẋ(t) = f(x(t)), for which the
variables in s = Cx are recorded and used to compose the set of multivariate embedding
coordinates (s1, . . . , sr , s

∗), is given by

Os =




C

GÃ

GÃ2

...

GÃm−r




. (17)

Example 7. Let us consider anew the four-dimensional system with x = [x y z w]T for which
s = [y w]T . The observability matrix of this system with respect to the set of multivariate
embedding coordinates (y,w, ẏ, ÿ) is

Oy3,w =




0 1 0 0
0 0 0 1

. . . . . . . . .

[0 1 0 0]Ã
. . . . . . . . .

[0 1 0 0]Ã2




, (18)

where the dotted lines separate what corresponds to the first three components in equation (17).
Since Ã ∈ R

4×4, then Oy3,w ∈ R
4×4 and Oy3,w indicates that three coordinates (y, ẏ and ÿ)

based on the y-variable and one (w) based on the w-variable are used in the embedding.

Property 1. If only one state variable is recorded r = 1, then s = Cx, and the set of
(monovariate) embedding coordinates is (s, s∗) where s∗ = (ṡ, s̈, . . .). Clearly, in this case
p = 1, G = C ∈ R

1×m, s ∈ R, s∗ ∈ R
m−1 and the new observability matrix (17) coincides

with the standard monovariable definition (8).

Property 2. If the system is linear, then Ã = J (f) and definition (8) reduces to the standard
definition for linear systems [20].
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Property 3. If all the state variables are recorded, then s = x and C = I ∈ R
m×m, where I is

the identity matrix. In this case, the set of complementary coordinates is empty, s∗ = ∅, since
there is obviously no need to span the embedding space beyond the original state space. In
such an ideal case, the observability matrix O is an identity matrix, constant over the entire
phase space.

It is therefore seen that the definition proposed in this paper for the observability matrix of
nonlinear multivariable embeddings, see equation (17), includes the nonlinear monovariable
embedding and the linear embedding as special cases, see properties 1 and 2. Also, the case
in which all the state variables are measured r = m is also a special case, as detailed by
property 3. Therefore, the aforementioned properties show that the results concerning
observability reached at with the new definition (17) are consistent with previously established
knowledge.

An interesting remark is that in the case of a multivariable embedding, the observability
matrix will depend on which of the recorded variables is used to span the embedding space.
For instance, in example 5 it was seen that three different sets of embedding coordinates
are possible when two variables are measured. Hence, the original four-dimensional system
can be, at least in principle, reconstructed using variables y and w in the following spaces:
(y,w, ẏ, ÿ), (y,w, ẇ, ẅ) and (y,w, ẏ, ẇ). It is natural to enquire if any of these options is
more adequate to reconstruct the dynamics of the original system by means of multivariate
differential embeddings. It will be argued that the new definition of the observability matrix,
which for each case is different, since the G matrix is different (see example 6), will provide
a means to investigate this issue.

One of the aims of this paper is to investigate how the choice of observables, not only
to compose s but also s∗, influences multivariate embeddings of nonlinear dynamics. A few
examples are considered in more detail in the following section.

4. Numerical results

In this section the observability matrix presented in definition 3 will be used to analyse a
number of alternative embeddings of the Rössler and Lorenz attractors using more than a
single variable. As it will be shown, many subtle factors are involved, and the observability
matrix in (17) turns out to be a useful tool to aid in the analysis.

4.1. Rössler system

Example 8. Suppose that only x and y are recorded from the Rössler system, hence s = [x, y]T

(see example 4). Choosing s∗ = ẋ yields the embedding (x, y, ẋ), in which case Gx = [1 0 0]
and

C =
[

1 0 0
0 1 0

]
.

From (17), the observability matrix in this case is

Ox2,y =
[

C

GxÃ

]
=


1 0 0

0 1 0
0 −1 −1


 ,

where Ã is the Jacobian matrix of the system (4). Because Ox2,y is constant, the dynamics of
the Rössler system can be reconstructed with ease over all the phase space in the multivariate
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embedding (x, y, ẋ). In this case, the index (14), which is a condition number of the
observability matrix, is δx2,y = 0.146. Note that δx2,y is greater than δy3 = 0.133 which
was the best situation in the monovariate case because it results in a global diffeomorphism
between the original and reconstructed phase spaces. As intuitively expected, recording two
variables helps, in this case, to improve the knowledge of the investigated system.

On the other hand, if y is used to unfold the dynamics (s∗ = ẏ) unto the embedding
(x, y, ẏ), for which Gy = [0 1 0], the observability matrix

Ox,y2 =
[

C

GyÃ

]
=


1 0 0

0 1 0
1 a 0




is rank deficient over all the phase space. This clearly shows that the Rössler system cannot
be observed from s = [x, y]T and reconstructed in (x, y, ẏ) at all. In fact, δx,y2 = 0.

The previous example points out that the choice of which variable should be used to unfold
the dynamics could be crucial. Here, having recorded x and y, the choice of ẋ to compose
the third dimension is very successful whereas the choice of ẏ precludes any possibility of
reconstruction. In the case of the Rössler system, this can be understood from the system
equations (4). Note that ẋ, which is the first equation, includes information about z whereas
ẏ only includes information of x and y which, in this case, is totally redundant.

It is crucial to note that what matters is the multivariable embedding set of coordinates
[sT s∗T ]T ∈ R

m and not one particular coordinate. To see this, consider the example just
mentioned. Having measured x and y (s = [xy]T ), the choice of ẏ to unfold the dynamics
(s∗ = ẏ) is inefficient, for the reasons put forward in the previous paragraph. On the
other hand, if only y has been measured (s = y), then the choice of ẏ and ÿ to unfold
the dynamics (s∗ = [ẏ ÿ]T ) is excellent, because it defines a global diffeomorphism. Also,
(s∗ = [ẏ z]) is clearly better than (s∗ = [ẏ x]) to unfold the dynamics because the latter results
in an unobservable reconstructed phase space. In fact, it was verified that a global model is
impossible to obtain in the space (y, ẏ, x) while it is very easy to get one global model when
the space (y, ẏ, z) is used.

This discussion brings to light that there are many subtleties in the choice of multivariable
embeddings and an analysis tool is desirable. It is argued that definition 3 (see equation (17))
is a helpful analysis tool for investigating multivariable nonlinear embeddings. This will be
discussed further in the following examples, where the choice of which variable should be
used to unfold the dynamics is probably not so clear due to a number of factors such as
dimensionality or even numerical aspects.

Example 9. Assuming s = [y, z]T , the observability matrices for the multivariate embeddings
(y, z, ẏ) and (y, z, ż) are, respectively,

Oy2,z =

0 1 0

0 0 1
1 a 0


 , Oy,z2 =


0 1 0

0 0 1
z 0 (x − c)


 .

Clearly, Oy2,z is not only constant but also is full rank. This favourable situation, at least from
an observability/reconstruction point of view, is confirmed by δy2,z = 0.454 which shows
that Oy2,z is quite far from singularity, on average. On the other hand, Oy,z2 is not constant
and will become singular for z = 0, that is, on the xy-plane. For the present example,
δy,z2 = 0.046 which is an order of magnitude smaller than δy2,z. The observability indices
in this example were computed by averaging (see equations (13) and (14)) along an orbit
obtained for (a, b, c) = (0.398, 2.0, 4.0).
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Finally, it is pointed out that the other two options of two-variable embeddings for the
Rössler system yield δx2,z = 0.146 and δx,z2 = 0.

4.2. Lorenz system

This section will investigate multivariate differential embeddings for the Lorenz system [21]


ẋ = σ(y − x),

ẏ = −xz + rx − y,

ż = xy − bz,

(19)

where (σ, r, b) are constant parameters and the Jacobian matrix is

Ã =

 −σ σ 0

−z + r −1 −x

y x −b


 . (20)

An interesting property of the Lorenz system is that the set of equations (19) is equivariant
under a rotation symmetry Rz(π) around the z-axis, that is, f(�Rz

· x) = �Rz
· f(x), where

�Rz
is the matrix that defines the rotation and is

�Rz
=


−1 0 0

0 −1 0
0 0 1


 . (21)

Matrix �Rz
in (21) shows that under the rotation symmetry Rz(π), variables x and y are

mapped unto −x and −y, respectively, whereas the z-variable remains invariant.
This investigation is relevant because the symmetry present in the Lorenz system provides

important a priori knowledge [14] that will turn out to be helpful to interpret the new definition
of the observability matrix. As before, the material will be presented in the form of worked
examples.

Example 10. Suppose that s = [x, y]T . Choosing s∗ = ẋ yields the embedding (x, y, ẋ), in
which case Gx = [1 0 0] and

C =
[

1 0 0
0 1 0

]
.

From (17), the observability matrix in this case is

Ox2,y =
[

C

GxÃ

]
=


 1 0 0

0 1 0
−σ σ 0


 ,

which is clearly rank deficient. If instead ẏ is chosen to unfold the dynamics, s∗ = ẏ, the
observability matrix becomes

Ox,y2 =
[

C

GyÃ

]
=


 1 0 0

0 1 0
−z + r −1 −x


 ,

which will only become rank deficient at x = 0. These results seem to suggest that using
s = [x, y]T , irrespective of using ẋ or ẏ as the third coordinate, is not a good choice to
embed the Lorenz attractor. In fact, (x, y, ẋ) is nowhere an embedding and (x, y, ẏ) is not an
embedding at x = 0.
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In fact, another way of seeing this problem is to note that in either case the embedded
attractor has the wrong type of symmetry, namely an inversion symmetry rather than a rotation,
as is the case for the original system. The � matrix that defines the inversion symmetry is

�P =

−1 0 0

0 −1 0
0 0 −1


 . (22)

In the case of the Lorenz system, the rotation symmetry is related to the z-axis, which is a
singular set. The existence of such a singularity in the original phase space permits the change
in the symmetry properties—from rotation to inversion—without altering the local dynamics.

The inversion symmetry also is associated with a singular set, which in the present
example is the trivial fixed point. The flow around such a singular fixed point is much more
complicated than the flow in the vicinity of the singular axis related to the rotation symmetry.
This is a consequence of the strong stirring necessary in the neighbourhood of the origin of
the phase space [22]. The dynamics is thus stiff and is therefore very difficult to quantify from
data by any global modelling technique. Continuous systems with an inversion symmetry are
not so common in the zoo of chaotic systems.

Example 11. Suppose that s = [x, z]T . Choosing the multivariable embedding coordinates
(x, z, ẋ) and (x, z, ż) yields the following observability matrices, respectively:

Ox2,z =
[

C

GxÃ

]
=


 1 0 0

0 0 1
−σ σ 0


 ,

Ox,z2 =
[

C

GzÃ

]
=


1 0 0

0 0 1
y x −b


 .

It should be clear that because the measuring function in this example is different from
that in example 10, the C matrix in each case is also different.

It is seen that whereas det(Ox2,z) = constant �= 0, det(Ox,z2) = 0 at x = 0. Therefore,
(x, z, ẋ) is an adequate embedding space whereas (x, z, ż) will not qualify as an embedding
because at x = 0 the diffeomorphism between the original space and the embedding space is
not defined.

Again, such analysis is confirmed by symmetry properties because in this case only
(x, z, ẋ) will provide the right type of symmetry, since (x, ẋ, z) are mapped unto (−x,−ẋ, z),
that is to say, that the space (x, ẋ, z) has a rotation symmetry as the original space. On the
other hand, in the case of the space (x, z, ż), the coordinates are mapped unto (−x, z, ż) (this
is a reflection symmetry) under the action of the rotation symmetry over the original phase
space.

When a reflection symmetry is involved, the phase space is composed by two mirror
images. Between such images there is a singular plane, that plays the role of a mirror. In the
case of the reconstructed space (x, z, ż), such a plane is x = 0. This plane is a singular set
where the map between the original phase space (x, y, z) and the reconstructed space (x, z, ż)

is not defined, and therefore it is a non-observable set.
Because the trajectories in the reconstructed space cannot cross the singular set, it is

impossible to have a single connected attractor globally invariant under a reflection symmetry
[22]. In the present case, the trajectory would cross itself at the singular plane (figure 1). It
is therefore obvious that no global model can be obtained in the reconstructed space (x, z, ż).
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Figure 1. Plane projection of the Lorenz attractor reconstructed in the space (x, z, ż). The
reflection symmetry with respect to the singular plane x = 0 is observed. Here θ = 0.111π is
chosen to show how the trajectory crosses itself. Parameter values: R = 28, b = 8/3 and σ = 10.

Increasing the dimension will be ineffective unless derivatives of x are included. In fact,
increasing the embedding dimension using derivatives of z will continue to yield a mirror-type
symmetry and, consequently, it remains impossible to obtain a global model in such a space.

Example 12. Finally, in this example, it is considered that the recorded variables are
s = [y, z]T . Choosing the multivariable embedding coordinates (y, z, ẏ) and (y, z, ż) yields
the following observability matrices, respectively:

Oy2,z =
[

C

GyÃ

]
=


 0 1 0

0 0 1
r − z −1 −x


 ,

Oy,z2 =
[

C

GzÃ

]
=


0 1 0

0 0 1
y x −b


 .

Such matrices become rank deficient, respectively, at z = r and y = 0. These cases are quite
similar to those involving s = [x, z]T .

4.3. Embedding in higher dimensions

So far, this paper has considered embeddings for which the dimension coincided with the
dimension of the original space, that is dim([sT s∗T ]T ) = m. However, in the realm of
nonlinear dynamics, especially after the work by Takens [10], the embedding of a time series
in a space of dimension higher than that of the original system is commonplace. This section
aims at discussing the well-known effect of increasing the embedding dimension in the context
of the framework presented in the paper. The main aim is to consider what happens to the
singular sets related to the Jacobian matrices of the coordinate transformation maps when
dim([sT s∗T ]T ) > m. To start with, the case of a monovariable embedding will be considered.
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Example 13. The Rössler system is considered anew and the embedding will be accomplished
by means of successive derivatives of the z-variable. In fact, the following embedding
coordinate system is investigated: (z, z(1), z(2), z(3)), where z(i) is the ith derivative of z. In
this case, the following can be written (see equation (6)):

�4
z =

∣∣∣∣∣∣∣∣∣∣

X = z,

Y = ż = b + z(x − c),

Z = z̈ = −b(c − x) + (x − c)2z − yz − z2,

W =...
z= bc2 + x(−2bc − 3yz − 4z2 + 3c2z − z

+ bx − 3cxz + zx2) + y(−3b + 3cz − az) + z(4cz − 2b − c3),

where the superscript 4 in �4
z indicates the embedding dimension.

As shown in example 1, embedding the Rössler system using the set of coordinates
(z, z(1), z(2)) ∈ R

3 poses observability problems since the system is not observable at z = 0.
This is quantified by the fact that the Jacobian matrix of the mapping function in dimension
3, �3

z in (6), becomes singular at z = 0 (note that for z = 0 the last element of the second
column of the Jacobian in (7) vanishes).

The question is what happens to the Jacobian matrix of the coordinate transformation map
as the embedding is increased from 3 to 4. In other words, what happens to J

(
�4

z

)
? The last

line of this matrix is composed by the partial derivatives

∂W

∂x
= −2bc − 3yz − 4z2 + (3c2 − 1)z + 2bx − 6cxz + 3zx2,

∂W

∂y
= z(−3x + 3c − a) − 3b,

∂W

∂z
= −3xy − 8xz + 3c2x − x − 3cx2 + x3 + 3cy − ay + 8cz − 2b − c3.

Clearly, for z = 0,

J
(
�4

z

)∣∣
z=0 =




0 0 1
0 0 x − c

b 0 (x − c)2 − y3x(c2 − y − cx)

2b(x − c) −3b −3xy + 3c2 − x + x3 + (3c − a)y − 2b − c3


 ,

which is a full column rank matrix. This illustrates that increasing the embedding dimension
removes singularity problems in the Jacobian matrix of the coordinate transformation. This
feature explains why it was possible to obtain a model using a 4D phase space reconstructed
using derivative coordinates from the z-variable [19].

Similarly to what happens for the monovariable embeddings, in the case of multivariable
embeddings, the increase in the embedding dimension also has the same effect of eliminating
singularities, as shown in the next example.

Example 14. Consider the Lorenz system for which

Ã2 =

 σ(σ + α) −σ 2 − σ −σx

βz−r(1−σ)−2xy σα+1−x2 βx − σy

−yβ + 2xα 2σy − xβ −x2 + b2


 , (23)

where α = r − z and β = σ + 1 + b. Let us consider again the results shown in example 12. It
was seen that both observability matrices Oy2,z and Oy,z2 became singular, the former at z = r

and the latter at y = 0.
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Let us consider the embedding set of multivariate coordinates (y, z, ẏ, ÿ), in this case the
observability matrix is

Oy3,z =

 C

GyÃ

GyÃ
2


 =




0 1 0
0 0 1

r − z −1 −x

βz−r(1−σ)−2xy σα+1−x2 βx − σy


 .

In this case, even for z = r (α = 0), the observability Oy3,z is now full column rank over all
the state space. Now, if (y, z, ż, z̈), the observability matrix is

Oy,z3 =

 C

GzÃ

GzÃ
2


 =




0 1 0
0 0 1
y x −b

−yβ + 2xα 2σy − xβ −x2 + b2


 ,

which only become rank deficient at {y = 0} ∩ {z = r} or at {y = 0} ∩ {x = 0}. Such spaces
are lines rather than planes, as before.

Finally, we consider the case for which the embedding set of coordinates is (y, z, ẏ, ż).
The observability matrix is now given by

Oy2,z2 =

 C[

Gy

Gz

]
Ã


 =




0 1 0
0 0 1

r − z −1 −x

y x −b


 ,

which still has a singular set at the intersection of the planes z = r and y = 0. Such a singular
set in R

4 is a line. Since increasing by 1 the dimensionality of the phase space reduces the
dimension of the singularity, we still need to increase the dimension of the reconstructed space
to remove the singularity. Starting from (y, z, ż, z̈), there are two possible choices in five
dimensions: (y, z, ẏ, ÿ, ż) and (y, z, ẏ, ÿ,

...
y).

Taking (y, z, ẏ, ÿ, ż), the observability matrix becomes

Oy3,z2 =




0 1 0
0 0 1

R − z −1 −x

−R(σ + 1) 1 + Rσ − σz − x2 (σ + b + 1)x − σy

+(σ + b + 1)z − 2xy

y x −b




.

The only way in which this coordinate system would be unobservable is for y = 0, z = R

and b = 0. But b = 0 results in a different system. Therefore, (y, z, ẏ, ÿ, ż) is globally
observable.

The second case with r = 5 is (y, z, ẏ, ÿ,
...
y). For this embedding, the observability

matrix is singular at two points (see below). Indeed, using s = [y, z] and taking higher order
derivatives of y to compose the complementary set of coordinates, s∗—in order to unfold the
dynamics—the following results are attained:

r = 3 (y, z, ẏ) z = R singular plane,

r = 4 (y, z, ẏ, ÿ) y = bR

2x
singular line,

r = 5 (y, z, ẏ, ÿ,
...
y) x = ±√

3(σ + 1)σbR

2(σ + 1)
singular points,

r = 6 (y, z, ẏ, ÿ,
...
y,

....
y ) no real solution singularity removed.

for the used parameter values
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Thus, increasing the dimensionality of the reconstructed phase space helps to reduce the
impact of the singularity involved in the coordinate transformation between the original and the
reconstructed phase spaces. In the last case, the global diffeomorphism is only obtained when
a 6D space is reconstructed, that is, when the dimension is greater than the Takens criterion
leading to 5 for the Lorenz system and with the usual parameter values. This example shows
that the embedding dimension required to have a global diffeomorphism can be larger for
the multivariate case when compared to a monovariable embedding. This confirms the fact
that appropriate multivariate embeddings are much more difficult to obtain than monovariable
embeddings.

5. Discussion and conclusions

This paper has investigated some aspects of multivariate differential embeddings. The
framework developed to do so was based on observability theory. In order to address the issue
of multivariate nonlinear embeddings, the definition of monovariate nonlinear embeddings
has been generalized. The theoretical motivation to accomplish such a generalization is to be
found in the links between the observability matrix and the coordinate transformation map.

A more general definition of the observability matrix has been suggested (see definition 3
and equation (17)), which now has, as particular cases, the following situations: the
monovariable nonlinear embedding (see property 1), the linear case (see property 2) and
the trivial case in which all the state variables are measured (see property 3).

Having defined the new observability matrix, several worked examples were considered
using two well-known systems, namely Rössler and Lorenz. As discussed, the new
observability matrix furnishes a framework in which multivariate nonlinear differential
embeddings can be analysed. The results for these two systems are generally coherent with
knowledge about the dynamics that arises from other sources. This overall coherence was
taken to be an indication that the tools developed and presented in this paper are valid.

In particular, it was possible to show that embedding an attractor with two observables is
not necessarily better than with one, especially in the noise-free case, which was investigated.
In fact, for the Rössler system, the monovariate coordinates (y, ẏ, ÿ) provide an embedding
over all the phase space whereas the multivariate set of coordinates (y, ẏ, x) renders the system
unobservable over all the phase space. On the other hand, there are intermediate situations,
such as (y, z, ż) which become unobservable only on a plane in phase space. The various
alternatives of how to compose the set of embedding coordinates can be readily analysed
using the observability matrix defined in this paper. The analysis of such results show that the
choice of which variables to measure is critical and that to use a greater number of measurands
to embed the original dynamics is not necessarily better. Therefore, in a particular practical
situation in which more than one variables are recorded, monovariable embeddings should
also be considered in the analysis and modelling.

Another interesting result that has been shown in this paper is that observability problems
of some embedding coordinates can be reduced or even avoided by increasing the embedding
dimension. This result is expected from Takens’ theorem [10], but a physically meaningful
interpretation is now readily available by using the defined observability matrix.

The discussions in this paper are of a theoretical character. However, it is hoped that the
tools developed herein will be useful to analyse multivariate embeddings of other systems and
to provide further insights into this relevant problem. In turn, it is believed and hoped that
such insights will have an important bearing on a number of practical problems in nonlinear
dynamics.
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